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Abstract

The equations of motion for a cantilever beam in bending

vibration are developed in state vector form using a normal

mode approximation. A linear optimal control system generates

a feedback control proportional to the state which is repre-

sented by modal amplitudes and velocities determined using

position information from sensors. The observer gain matrix

and the feedback control gain matrix are both determined from

a steady state optimal regulator which minimizes the related

quadratic performance index. Control is applied through

point force actuators. The effects on beam response of sensor

and actuator location, reduced observation and control spill-

over, restructured control performance index, and a reduced

order optimal regulator are examined. Parameter variations

of the modal amplitudes were tested to note effects on system

stability with both stable and unstable controllers. Singular

perturbation theory is used to reconstruct the control per-

formance index, essentially adding a penalty function against

any control vector that lies in the suppressed modes subspace.

Singular value decomposition is used to construct a transfor-

mation matrix through which observation and/or control spill-

over may be eliminated. A means by which optimal actuator

locations may be determined is also presented.

System rcsponse is shown to be very sensitive to actuator

vi



location. Singular perturbation provided a method through

which control spillover could be minimized for the actuator

locations chosen, however, it did not provide the means by

which the actuators could be positioned such that the spill-

over effect could be eliminated. Optimal actuator locations

could be found using singular value decomposition. Control

and observation spillover effects could then be completely

eliminated only where the number of actuators was equal to or

greater than the number of modes to be suppressed. Robustness

of system response to modal amplitude errors was very good,

and the unstable controllers tested did not appear to seriously

affect this robustness.
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MODERN OPTIMAL CONTROL METHODS

APPLIED IN ACTIVE CONTROL OF A

CANTILEVER BEAM IN BENDING VIBRATION

Introduction

The control of large space structures has received much

attention since the advent of the space shuttle program. Ac-

tive control of the structural vibrations associated with large

structures using modern optimal control methods is one area

presently being investigated. The advantages of using these

methods lie in the fact that the design process can be fully

automated and adapted to a large class of problems rather

than a specific model configuration. An optimal number and

placement of sensors and actuators could also be determined.

Despite these and other advantages, these methods have seen

little application in the control of large space structures

due to inherent problem areas associated with using them.

Two of the main problem areas deal with model reduction and

modelling inaccuracies. A very large number of modes may be

required to model a flexible structure. Active control of

all these modes would be impractical due to computer, sensor,

and actuator requirements, therefore a reduced order model

of the system must be considered, giving rise to model reduc-

tion error. In a complex structure,modelling can be accom-

plished using finite element approximations, however, this



approximation technique produces modal data whose accuracy

is uncertain. Modelling inaccuracies cause the modal fre-

quencies and mode shapes to be in error.

Balas (Ref 1) discusses a method by which a class of

flexible structures can be controlled through the use of

sensors, actuators, a state estimator, an, state variable

feedback; and he showed that this could lead to closed loop

instabilities in the reduced model when modes other thi

those controlled are considered. These instabilities are

caused by the combined effect of what Balas termed observa-

tion and control spillover. Sesak (Ref 2) used singular

perturbation theory and a highly mathematical approach toward

eliminating control spillover. Sesak's technique, however,

gave little insight into how or when it might work. Several

specific examples were shown, but no general results were

obtained. In an attempt to explain the singular perturbation

approach, Coradetti presented an analysis of the limiting

case of the singular perturbation method and showed that it

was equivalent to finding a transformation matrix which re-

duced control spillover. This transformation matrix can be

determined from singular value decomposition of the control

matrix associated with those modes in the model that are not

actively controlled. Using this technique actuator locations

could be predetermined to produce a transformation matrix

which would eliminate control spillover. Actuator placement

and the number of actuators necessary to achieve this result,

however, were not examined in depth; and applying this
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technique to eliminate observation spillover was not

considered.

The purpose of this thesis is to apply Balas' method to

a cantilever beam and determine the effect on the beam re-

sponse of sensor/actuator location, and reduced observation

and control spillover using singular perturbation and singu-

lar value decomposition techniques. In addition, recent work

by Johnson (Ref 5) has shown that standard optimal control

design can Jead to unstable controllers. The effects of a

stable versus an unstable controller on system robustness to

modelling inaccuracies, specifically modal error, is also

considered.

The approach taken involves forming a discrete system

through normal modes approximation. Position sensors are

used to determine modal amplitudes, from which a state esti-

mator reconstructs the mode shapes. Control is accomplished

using point force actuators through state variable feedback.

Both the observer and feedback control use gains produced

from steady state optimal regulators. Control performance

index restructuring, using singular perturbation, penalizes

the control against acting on modes other than those desired.

Singular value decomposition of the modal amplitudes at the

sensor or actuator location is used to develope a transforma-

tion matrix through which observation and/or control spill-

over may be eliminated.

The main areas examined in this report are: system sensi-

tivity to sensor and actuator placement; reducing observation
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( or control spillover using singular perturbation and singular

value decomposition techniques; the number of actuators re-

quired and placement necessary to eliminate control spill-

over; system robustness to modal error for both stable and

unstable controllers.
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System Model

Equations of Motion

The continuous differential equation of motion for a

cantilever beam in bending vibration is defined in Meirovitch

(Ref 4:208,209) as

-a2 32y(x,t) m 2y(xt)

aX2 EI(x) ax2  + f(x,t) Ma (i)

with boundary conditions

Y(0,t) = 0

aY(x,t) = 0
ax x=0

(2)

EI(x)a2y(x't) = 0
aX2  x=L

a 2Y(x,t)
ax ax2  x=L

where x is the variable along the length of the beam, Y is

the vertical deflection, EI(x) is the bending stiffness, f

is the applied force, L is the length of the beam, and m is

the mass/unit length. The case considered is that of a

uniform beam in free vibration so that

EI(x) = constant

f(x,t) = 0 (3)

m(x) = constant

A discrete form of Eq (1) can be obtained through the

substitution
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n
Y(x,t) = Z *i(x)U.(t) (4)

/ i=l'

where are the mode shapes, Ui are the mode amplitudes, and

n is the number of modes. An exact solution would require

that n equal infinity; however, for practical purposes n is

chosen to be much less than infinity. This truncation intro-

duces inaccuracies termed model reduction errors. The above

substitution leads to

di i(x(x) = 0 (5)

dx
4

where
Wi 2 MI 

(6)
1 El

with boundary conditions

( i (O) = 0

di(x)

I =0
dx x=0

(7)d24.i(x)d I =0

dx 2  x=L

d34i(x)
1 =0

dx3  x=L

The solution of equation (5) subject to these boundary

conditions is
SW(x) = (sin$iL - sinhiL)(sinSix - s.'nh ix)

1 (mL) sin iL sinhiL

(cos8iL + coshSiL) (cosaix - coshaix)
+ (mL) sinBiL sinh~iL (8)

where 8iL is determined from the characteristic equation
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coso.L cosh .L = -1. (9)1 1

The mode shapes, i, are normalized with respect to the con-

stant mass density, that is

L
f m~i~x) j(x)dx = 6ij (10)0

where 6.. is the Kronecker delta. These mode shapes and modal

amplitudes are then used to form a linear system model to

which modern control theory is applied.

Linear System Model

The number of modes, n, in a structural model may still

be very large. For practical purposes the controller should

be concerned with as few modes as possible and still maintain

a stable system. A determination of which modes need to be

controlled will be discussed later, however, for the time be-

ing it is accepted that the formulation of a linear model

should allow for this. If the model to be developed is con-

sidered to consist of three parts, a controlled, a suppressed,

and an un-modelled part; Eq (4) can be partioned.

Y(x,t) = Yc(x,t) + Ys(x,t) + Yum(x,t) (11)

Where the suppressed modes are those over which control is

unnecessary, however, their behavior must be considered. The

un-modelled modes are generally the higher frequency modes

where natural damping is condisered adequate to preclude the

development of any instabilities.

The controlled part of Eq (11) is

C
Yc (x,t) = o *i(x)Ui(t) (12)

i=l

7



the suppressed part
c+s

Ys(x,t) E j.(x)U (t) (13)
j=c+l

and the un-modelled part
n

Y um(x,t) E O k(X)Uk(t)
k=c+s+l

where c represents the number of controlled modes, s is the

number of suppressed modes, and n is the total number of modes

in the model. Further consideration of the un-modelled modes,

however, is necessary in that the controller that will be de-

veloped in the linear model will have no knowledge of these

modes. The purpose of discussing the un-modelled modes is to

demonstrate that the model reduction process actually involves

two truncations, the first to a finite number of modes to des-

cribe a structure, and the second limiting concern only to

those considered critical. Both of these truncations lead to

inaccuracies.

The amplitudes of the controlled and suppressed modes to-

gether with their rates of change form the states

V (t) = T(t) UT (t)1 (14)and c UJ

V (t) [ t) ujT(t (15)

substituting this into the discrete form of the equation of

motion, the system can be modelled by

Vs(t) = AsVs(t) + BsT(t) (17)

where a dash over a variable represents a vector, and a dash

8



under a matrix. f(t) is the vector of control inputs.

The system parameter matrices are

A - 0 L -42i (18)

A s = [C w (19)

B (20)
c

B (21)

where wi, . are the natural frequencies of the controlled and

suppressed modes respectively, the 0 matrices are diagonal ma-

trices whose elements are the squares of the natural frequencies,

is the damping factor, 0 and I are the null and identity ma-

trices, Bc and Bs are the matrices whose columns are the mode

shapes evaluated at the actuator locations, x.. xa.

B c (22)

cx I (xa

B =7(23)-SI
(x ) "€ (Xa)

c+s 1 c+s a

The sensor output is given by

9



Y(t) = CVc (t) + CsVs (t) (24)

C: [ c O (25)

CS = [s:0] (26)

C and C are matrices whose rows are the mode shapes of the

controlled and suppressed modes evaluated at sensor locations,

x ... x .

(x )-.(x

C (27)

c (Xb c " " ,c (X(bc~ l X 1 0 csxl
S c+l (Xb) "c+s(Xb)

The null 0 portion of C and C matrices represent the rates--- C -S

of change of the mode shapes at sensor locations and are 0

since displacement only sensors are used. Although this model

has been developed for a relatively simple structure using

exact mode shapes, the method could easily be used on complex

structures using finite element approximations, where no

simple continuum description is available.

Since we wish to use state variable feedback, complete

knowledge of V (t) is required, however, the only knowledge
c

available is that contained in the sensor outputs. There-

fore, a state estimator is required in order to implement

the control system.

10



Observer Model and

Feedback Control System

The state estimator has the form

Vc =A c(t) + B-(t) + K Y(t) - Y(t) (29)

where Vc(t) is the estimate of Vc (t) such that

Vc(t) = Vc(t) + e(t) (30)

where e(t) is the error, the sensor output is

Y(t) = C c V (t) + CsVs (t) (31)

The output corresponding to the estimated state is
A A

Y(t) = C V (t) (32)--c c

Using equations (29), (30), (31), (32) and (16) it can be

shown that

e(t) = (Ac - K c)e(t) + K Css(t) (33)

The observer gain matrix, K, must be developed such that this

estimator error decays more rapidly than the system dynamics

for proper system response. The eigenvalues of (A - K Cc)

determine the decay rate. Since these eigenvalues are the

T T T
same as the eigenvalues of (A - C KT), the equations of

-C -c-

motion for the sensing system can be modelled in the form

w(t) = A Tw(t) - C g(t) (34)where - -

g(t) = K w(t) (35)

The observer gain matrix, K, is then calculated using a steady

state optimal regulator, where

f = s w + dt (36)
0

11



is minimized. The optimal solution is given by

KT -R 1C P (37)

where P is the solution to the algebraic matrix Riccati

equationT
n P AT + AcP -E 2 Tb-IC P + Q = 0 (38)

where Rob and Q are weighting matrices.

Similarly, the control feedback gain matrix, G, is

calculated using the steady state optimal regulator
00

f = f (VcTVC + fTRf)dt (39)
0

where F and R are weighting matrices, and

f(t) = GVc (t)

The optimal solution is given by

G = -R-IB TS (40)

where S solves the matrix Riccati equation
sA +A Tss B RBTS 0(1
-C -- -- C- s+ F= 0 (41)

using these results the equations of motion for the system

are now
V (t) = (A + BG)V (t) + B Ge(t) (42)c --c -c- c - -

and

Vs(t) = As V s (t) + BsG Vc(t) + BsG e(t) (43)

By defining a composite system state vector

T(t) = cT(t) :eT(t) VsTlt T (44)

a closed loop system model with state variable feedback con-

taining the effects contributed by suppressed modes can be

written as

12



A+BG BcG 0

Z(t) 0 A c-KC !C s (t) (45)

BsG BG A

The terms K C and B G are the observation and control spill-- - -s-

over terms, respectively. It is evident from this equation

that the conbination of the two could produce instabilities

in the system.

Linear Control System Represented

In Block Diagram Form

The equations now governing the system are

V = A V + Bf state equation (46)

= C V displacement equation (47)

T= G Vc control equation (48)
A A

Vc = A cVc + Bcf" + K(Y-Y) estimator equation (49)

Putting the system into block diagram form and separating the

plant from the controller yields Figure 1. Johnson, (Ref 7)

showed that through manipulation, this diagram can take the

form of Figure 2, from which it is easily seen that the trans-

fer function for the controller is

=(s) = K(SI - A - B G + KC c)-G (50)yc c c

If any of the eigenvalues of (Ac + BcG - KC c ) are positive,

the controller would be unstable. It is interesting to note

that in a standard optimal design process an unstable con-

troller could unknowingly be developed, which when connected to

13



the plant would still produce a stable system. In addition

to the devastating effects this unstable controller could

have on a system if it were ever disconnected from the plant,

possibly through an electrical interuption, a sensitivity

study of system response to parameter variation was conducted

for both stable and unstable controllers.

14



Plant

+1

V I NE

Controller

, - G- IVc Vc+

Fig 1. System Represented in Block Diagram Form

Plant

+I I
BINTEG C,

I I

Controller

G <c INTEG K

-- Ac+BcG-Kc

Fig 2. System Represented in Modified Block Diagram Form
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Singular Perturbation Optimal Control

This section outlines the procedure developed, by Sesak,

of applying singular perturbation theory to the control of a

flexible structure. The method is designed to decouple the

suppressed and the controlled systems by reducing the signal

level in the suppressed portion of the plant. Under these

restrictions the controller does not excite the suppressed

modes, therefore, the suppressed forced response (control

spillover) goes to zero. It can be seen in Eq (45) that if

the control spillover is zero, the eigenvalues of the system

would be the eigenvalues of the diagonal elements. Since

these are designed to be negative the system would then be

stable.

Singular perturbation is a variation that changes the

order of the differential equation characterizing a particular

dynamic system. Consider the performance index of the system

under consideration given as

00 T T T
J = f (Vc FVc + VS Qs Vs + f Rof)dT (51)

0
subject to

[c Ac 0 Vc + Bc f (52)

Vs  0 A s  V s  B s

It is desired that the dynamics associated with the suppressed

modes be stable, therefore, the singular perturbation constraint

16



E 0 is used. This yields
s

0 = A V + B f (53)ss s

or

V = -A -'B f (54)s a s

substituting this into Eq (51) yields

VsTQsV s = fTBsT(As-1)TQs(As-I)Bsf (55)

where Qs is a positive semi-definite weighting matrix. The

new performance index is

J = f VcTFVc + fT (Ro + BsT(As-')TQsAs-Bs)fdt (56)0
subject to

Vc = AcVc + Bcf (57)

The weighting matrix, Qs' is designed to change the weighting

of the penalty on the suppressed modes until control spill-

over is eliminated. Whether or not this is always possible,

or under what conditions it is, was not discussed. Several

specific examples were shown, but no general results were

obtained. It was found that the method would reduce control

spillover, using very large gains, however, the amount of re-

duction was very dependent on actuator locations.

17



Transformation Method

A method, presented by Coradetti, for eliminating con-

trol spillover, using a transformation matrix, is developed

in this section. The transformation matrix, which is deter-

mined from singular value decomposition of the suppressed

modal amplitudes, is used to constrain Kc such that

Bshc 0 (58)

and
Bc~ 0 (59)

thereby eliminating control spillover, and allowing complete

control over the modes chosen. The matrix B may be express-

ed through singular value decomposition in the form

B = U W XT (60)--S-

where

B (m x n) is a rectangular matrix of modal amplitudes5

evaluated at the actuator locations

U (m x m) is the orthogonal matrix of left singular

values

X (n x n) is the orthogonal matrix of right singular

values

W (m x n) = f7 f] 'where all elements are zero except

Oii, i = l,...q. These are the

non-zero singular values of Bs"

The number q is equal to the rank

of B
-S

18



Partitioning U and X

~=[UqjU] (61)

where Uq (m x q), Ur(m x r), q + r = m

X= FXq:Xp] (62)-- q PI

where X (n x q), X (n x p), q + p = n
q p

then
T

B U aX (63)-s q q

Defining

L = X and T = X (64)- q - -P

and since X is an orthogonal matrix

B T = U ax TX=U 0 = 0 (66)

-s- -q---q -p -q. -..

In order to acheive Eq (66) certain conditions have to be met.

If the rank of B (m x n) is r, then the nullspace formed of

solutions to BST =0, has n - r free variables as independent

parameters. If r = n, there are no free variables and the null-

space only contains T = 0. In the case of r < m there are n -

r constraints on T in order for BST = 0 to be solvable. If

one solution exists, then every other solution differs from it

by a vector in the nullspace of B s . Therefore, in the case of

r = n < m the only T matrix that is possible for B T = 0 is

T = 0. However, when r < m, n, then there will always be a solu-

tion to B T = 0, for which T & 0. If B is of full rank, r =

min (m,n), and must therefore be reduced to realize Eq (66).

Since m is determined by the number of modes suppressed and

19



n by the number of actuators in the system, a T matrix can be

found which satisfies Eq (66) only when the number of actuators

are equal to or greater than the number of modes to be suppressed.

The minimum number of actuators, that can be used successfully

with this method, is two; since a matrix of rank 1 cannot be

reduced.

The reducbd order optimal regulator problem is defined by

J Vc FVc + fTRf dT (67)
0

subject to
Vc = AcVc + Bcf (68)

with the additional constraint

Bsf = 0 (69)

Defining a new control, U, where

= TU (70)

The new optimal regulator problem is

E ~c VC +U RT UdT (71)

subject to
V = A V + B U (72)

c -cc -T
where

B = B T (73)

-T -c-
and

RT = TTRT (74)

The solution is given by

U=-KiV (75)

ET = RT-B Ts (76)

where S is solved from the matrix Ricatti equation

0O =F + S A + A TS + S BR -B TS (77)

20



( The gain matrix is then

K = TKT (78)

Actuator locations were determined using the singularity

computer program (Appendix B). The program was used to vary

actuator locations and determine the nonzero singularities

of Bs Actuator locations were chosen such that one of these

singularities approached zero, indicating a reduction of the

rank in B s These actuator locations were then used in the

main program and the T matrix constructed through singular

value decomposition of Bs at these locations.

(
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Limit Method

This section contains an extension of Coradetti's

Transformation Method which further explains Singular Per-

turbation Optimal Control. This information was not avail-

able durring the investigation conducted on Singular Pertur-

bation Optimal Control and it serves to substantiate the

results obtained.

Considering Eqs (75) and (76), the matrix Ricatti Eq

(77) can be rewritten as

0 = F + S A +ACTS + S +cT(TTR TITTBT T(79)

Defining a new matrix, H, where

H = T(TTR T)-ITT (80)

Eq (79) becomes

0 = F + S A + ATS + SBCH B TS (81)

The associated performance index is

J fV FV +fH'FdT (82)0

subject to (

Vc=A -cVc +-cf(3

Comparing Eqs (81) and (82) to Eqs (41) and (67), it can be seen

that H-1 = R and R-1 = H; however, by design, T(TTR T)TT is not

full rank. Therefore, H-1 does not exist; consequently, there

is no finite matrix R = H-1 such that R-' = H, except possibly

in a limiting case. Defining a new control weighting matrix, as

R R + aB T = H-1 (84)
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where Q is any positive definite matrix and a is any positive

real scalar. Coradetti shows, in an involved mathematical

proof, that, in the limiting case of a o, R - = H. Adding-S

this to the performance index yields

J iVcTVc + (R + aBsTQ Bs)f dT (85)0

It is now quite clear that it is penalizing the performance

index against any control vector that lies in the subspace

occupied by Bs. Multiplying B TQ B by a large enough scalar
-s -

would effectively eliminate any control acting on the suppress-

ed modes, however, in theory, it would require an infinite

value to accomplish this. Coradetti found that this method

will decrease control spillover until the numbers involved

become so large that computer roundoff errors cause problems

in matrix inversion, necessary in solving the matrix Ricatti

equation. Singular Perturbation Optimal Control essentially

applies the Limit Method with the substitution

aQ = (A s-*TQsAs -  (86)

made in Eq (84). The Limit Method, as presented, shows that

while Singular Perturbation Optimal control can reduce control

spillover, it can never actually eliminate it.
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Computer Model

The function of the main computer program was to assemble

the system matrix and determine the associated eigenvalues.

The program was modified as needed to incorporate singular

perturbation optimal control, the transformation method, and

parameter variations. A listing of the program using the

transformation Method, and permitting parameter variation is

listed in Appendix A.

The first function of the program was to assemble the

required matrices. Input data necessary consisted of: beam

length, mass, and bending stiffness; sensor and actuator lo-

cations; and the roots to the characteristic equation. The

root values input were: mode 1 - 1.875, mode 2 - 4.694, mode

3 - 7.855, mode 4 - 10.996, mode 5 - 14.137, mode 6 - 17.278.

The beam length, mass, and bending stiffness were 1, and F,

Fb, R and Rob weighting matrices were each the identity ma-

trix. The natural frequencies, determined by squaring the

roots to the characteristic equation, are then used to con-

struct the Ac and A s matrices. Equation (8), for the modal

amplitudes, is solved using subroutine Modes (Appendix A),

and used to fill matrices Bc, Rs, Cc and Cs. Using E, B,

A. and R, the steady state algebraic Ricatti equation is

solved using subroutine MRIC from the Aerospace Medical Re-

search Laboratory Library. The optimal control gain matrix,
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G, is then solved for using Eq (40). The optimal observer

gain matrix, K, is solved for in an identical manner. The

system matrix, Eq (45), was then constructed, and subroutine

EIGRF from the International Mathematical and Statistical

Library (IMSL) produced the complex eigenvalues associated

with the system. The weighting Matrix, Qs' was varied from

1 to 1 x 1014 in examination of the singular perturbation

optimal control method. Subroutine LSVDF, from the IMSL li-

brary uses singular value decomposition to construct the

transformation matrix, T, from which a reduced order gain

was developed.

A second computer program, listed in Appendix B, was used

to generate data for determining sensor and actuator placements.

In this program sensor or actuator location was varied and the

non-zero singularities associated with Cs or Bs were determined

through singular value decomposition. The desired sensor or

actuator locations were those which caused one of the non-zero

singularities to most closely approximate zero.

The sensitivity study was made using up to ±20% variation

of the elements of the BC, Es, Cc, and Cs matrices. This was

accomplished by multiplying the elements of these matrices by

one factor, if the sum of its subscripts were even, and by

its negative counterpart if the sum was odd. This effectively

alters the mode shapes, simulating modal error. Although this

method does not account for any frequency errors incurred, the

results should essentially reflect the effects produced by

modal amplitude error.
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Outline of Investigation

An investigation was conducted examining Singular Per-

turbation Optimal Control and the Transformation Method

applied to the. model developed of a cantilever beam. In

addition, an investigation to determine system robustness

to parameter variations was made.

The first area investigated was the use of Singular

Perturbation Optimal Control to eliminate control spillover.

A single sensor and actuator were initially used to control

three modes and suppress one. When it was found, that in the

process of reducing the control spillover, control over the

first three modes was gradually being lost, another sensor

and actuator were added to the system. It was then possible

to decrease control spillover and still maintain control. The

conditions which determine the reduction realized using this

method are discussed.

The second area investigated was the Transformation

Method for eliminating control spillover. Two sensors and

two actuators were used to control two modes and suppress two.

Demand on the system was then increased to control three modes

and suppress three. The effectiveness of the method, in elimi-

nating spillover effect and uncoupling system eigenvalues, under

these conditions, was examined and some general conclusions

were drawn.
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The elimination of observation spillover using the

Transformation Method was then investigated.

Finally, an investigation of system robustness to para-

meter variations which simulated modal error, was made. Sys-

tems with both stable and unstable controllers were considered.
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Investigation

This chapter consists of discussions of the results

obtained in investigating the areas presented in the outline.

Singular Perturbation

Optimal Control

This section of the investigation applies singular per-

turbation techniques to reduce control spillover. Initially,

a single co-located sensor/actuator pair were used to control

the first three modes and suppress the fourth. The weighting

matrix, Q , was increased from 100 to 101 4 , and system response

was examined. As Qs approached 101, the real part of the

eigenvalue associated with the suppressed mode, which was in-

itally positive, approached zero, indicating the method was

reducing control spillover. However, the real part of the

eigenvalues associated with the three controlled modes, which

were all initially negative, also approached zero, indicating

a general loss of control in the system. Since the method did

not appear suited to single sensor/actuator operation, two

sensors and actuators were then used. In this case control

could be maintained, while control spillover was reduced,

however, as can be seen in Figure 3, little suppression of the

fourth mode is realized until Qs gets very large (= 10") as

compared to R and F (1 1). After this point, the curve flattens,
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and an infinite weighting would theoretically be required to

achieve complete suppression. The suppressed mode, in this

case, hae in eigenvalue of 1.501, ±j120.37 using a Qs of 1,

and an eigenvalue of 0.0021, ±j120.91 using a Q s of 101, which

demonstrates the reduction in control spillover achieved using

this method. It can be concluded, therefore, that while this

method is effective in reducing control spillover, it will

never actually eliminate it. The control spillover will be re-

duced, as Q s increases, only to the point where the numbers in-

volved become so large that computer roundoff error becomes

significant. The method also appears to require a reduction

in control to reduce control spillover, explaining why control

was lost in single actuator operation. These results can be

substantiated in light of Coradetti's Limit Method, where com-

puter roundoff error for very large Qs eventually causbd prob-

lems in matrix inversion, necessary in solving the matrix

Ricatti equation.

The Transformation Method

In this section, a transformation matrix is generated to

produce a gain matrix for which control spillover is eliminated.

Two co-located sensor/actuator pairs were used to control the

first two modes and suppress modes three and four. In apply-

ing the Transformation Method, B s should be made not full rank.

In the case above, the Bs matrix has two non-zero singular

values usually associated with it, determined from singular

value decomposition. Since the number of non-zero singular

values of a matrix equals its rank, if one of these can be made
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approximately zero, through appropriate actuator placement,

the rank of B would decrease from two to one. The Singu--S

larity Computer Program (Appendix B) was used to produce Fig-

ure 4, from which actuator locations could be determined to

decrease the rank of B . In this figure, actuator 1 position
-s

is held constant and the minimum singular value of B is
-S

plotted as actuator 2 position is changed. Actuator combina-

tions are chosen such that the minimum singular value approaches

zero, excluding co-located actuators, which produce trivial sol-

utions. Two cases are examined in this figure yielding useful

actuator combinations of : 0.6, 0.285; 0.6, 0.89; 0.2, 0.585;

0.2, 0.855. The method appeared to work extremely well using

these actuator combinations, essentially yielding zero eigen-

values for the two suppressed modes and uncoupling system

eigenvalues to six decimal places. Table I demonstrates both

of these results. The largest control spillover terms were

on the order of 10- . These terms would decrease as actuator

placement approached more precisely the point producing a zero

singular value. A comparison between a system utilizing the

Transformation Method, and the same system not using it, is

presented in Table II, demonstrating the Transformation Method's

effectiveness in suppression and uncoupling of system eigen-

values.

Demand on the system was then increased to control the

first three modes and suppress modes four, five, and six. As

pointed out in the presentation of the Transformation Method,

actuator placement, when there are more modes to be suppressed
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Table I

Modal Suppression and Eigenvalue Uncoupling

Using the Transformation Method

Eigenvalues
of A + B G -1.341328 0. (C-i)-c -C -15.953688 0. (C-1)

-5.979912 ±j20.493 (C-2)

Eigenvalues
of AC - K Cc -0.923323 ±j3.591 (0-1)

-13.493944 ±j15.910 (0-2)

Eigenvalues of
the System -2.883098X10 - 7  ±j120.912 (S-4)

+3.058266xi0 -8  ±j61.701 (S-3)
-1.341328 0. (C-1)
-15.953691 0. (C-1)
-5.979912 ±j20.493 (C-2)
-0.923323 ±j3.591 (0-1)

-13.493942 ±j15.910 (0-2)

Two Controlled, Two Suppressed Modes

Sensor Locations 0.4 0.2
Actuator Locations 0.6 0.285
Singular Values of B5  2.12 0.000011

(S-x) - (Suppressed-Mode) Eigenvalues
(C-x) - (Controlled-Mode) Eigenvalues
(O-x) - (Observer-Mode) Eigenvalues

Uncontrolled Structural Damping Ratio = 0.0
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than actuators, could not be chosen such that one of the non-

zero singular values of Bs would go to zero. However, actuator

placement could be chosen to minimize a non-zero singular

value. The non-linear behavior of this singular value is dem-

onstrated in Figure 5 which represents three of the actuator

placement combinations used. The figure was generated setting

one actuator at a specific location and varying the location of

the second actuator. The curves represent the minimum singular

value found using all possible actuator locations with a step

size of 0.05 from 0.0 to 1.0. The curves also demonstrate that

the only actuator combinations that can produce a zero singu-

lar value, indicating a reduction in the rank of B , is where

the actuators are co-located, representing a trivial solution.

The minimum value of these curves will provide the best, in

the least squares sense, actuator combination to be used with

the method. Results obtained in this case are presented in

Tables III and IV. Table III represents the results obtained

using the actuator combination (0.95, 0.79), which produced

the smallest singular value (0.16), and Table IV, an actuator

combination of (0.65, 0.90), which produced a singular value

of 0.265. The third actuator combination (0.90, 0.66) pro-

duced results very similar to those in Table IV and was not

presented. The spectral radius of B G is the square root of

the sum of the squares of the elements in Bs G. Both systems

shown did very well in controlling and suppressing the modes

required. Also, uncoupling of system eigenvalues was very

good. It can be seen when comparing these two tables that
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Table III

System Response Using the Transformation Method

With a Minimum Singular Value for B sof 0.16

Eigenvalues
Of Ac + B G -1.2101 ±j3.334 (c-1)

-0.5948 ±j22.022 (C-2)
-0.3755 ±j61.701 (C-3)

Eigenvalues
of A c- K CC -6.8487 0. (0-1)

-2.3939 0. (0-1)
-16.4721 ±jI5.624 (0-2)
-31.5344 ±j39.903 (0-3)

Eigenvalues
of the System -1.4926 ±j298.525 (S-6)

-0.9993 ±j199.852 (S-5)
-0.6039 ±j120.909 (S-4)
-1.2101 ±j3.334 (C-1)
-0.5948 ±j22.022 (C-2)
-0.3755 ±j6l.201 (C-3)
-6.8494 0. (0-1)
-2.3937 0. (0-1)

-16.4707 ±j15.625 (0-2)
-31.5413 ±j39.905 (0-3)

Three Controlled, Three Suppressed Modes

Sensors/Actuators Co-located at 0.95 0.79
Uncontrolled Structural Damping Ratio = 0.05

(C-x) - (Controlled-Mode) Eigenvalues
(0-x) - (Observer-Mode) Eigenvalues
(S-x) - (Suppressed-Mode) Eigenvalues

Control Spillover, B G, Largest Term =0.149

Spectral Radius of NSG =0.280
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Table IV

System Response Using the Transformation Method

With a Minimum Singular Value for B Sof 0.265

Eigenvalues
Of Ac + B cG -1.056 ±j3.377 (C-1)

-c --- 0.159 ±j22.033 (C-2)
-0.330 ±j61.699 (C-3)

Eigenvalues
of Ac - K Cc -3.173 ±jl.365 (0-1)

-- 19.417 ±j21.484 (0-2)
-25.596 ±j38.826 (0-3)

Eigenvalues
of the System -1.492 ±j298.525 (S-6)

-0.999 ±j199.852 (S-5)
-0.602 ±j120.910 (S-4)
-1.056 ±j3.377 (C-1)
-0.159 ±j22.033 (C-2)
-0.330 ±j61.694 (C-3)
-3.173 ±jl.366 (0-1)

-19.416 ±j21.483 (0-2)
-25.597 ±j38.828 (0-3)

Three Controlled, Three Suppressed Modes

Sensors/Actuators Co-located at 0.65 0.90
Uncontrolled Structural Damping Ratio 0.05

(C-x) - (Controlled-Mode) Eigenvalues
(0-x) - (observer-Mode) Eigenvalues
(S-x) - (Suppressed-Mode) Eigenvalues

Control Spillover, B G, Largest Term =0.223

Spectral Radius of B G = 0.314
s-
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control spillover is less and the system responds better as

the singular value decreased. These effects were verified

through further testing.

Observation Spillover Reduction

This section uses the Transformation Method to reduce

observation spillover. Since the Transformation Method

apparently worked so well in minimizing control spillover,

the method was applied to reduce observation spillover with

the thought that system response may be further improved. In

the cases tested, the method was applied to reduce both ob-

servation and control spillover simultaneously. Again, two

co-located sensor/actuator pairs were used to control three

modes and suppress three. The procedure was identical to

that used in reducing control spillover, and was simplified

due to the fact that the sensors and actuators were co-located.

The results obtained proved interesting in that, although

observation spillover was decreased, the method actually

appeared to decrease the overall stability of the system. In

the cases tested, all system eigenvalues remained essentially

the same, except for three. These three were observer eigen-

values associated with the Ac - K Cc matrix. A representative

example illustrating this effect is shown in Table V, where

control spillover is reduced in both cases, but observation

spillover in only one. The eigenvalues of the three suppress-

ed modes, which are directly influenced by the combined effect

of observation and control spillover, are not significantly
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-changed, however, the eigenvalues of the Ac - K Sc matrix, an

indication of the rate at which the observer error terms decay,

have generally shifted to the right. Evidently, the Transfor-

mation Method, applied in reducing observation spillover, re-

duces observability, much as it reduces control, in achieving

a reduction in spillover. This reduction in observability

has the effect of producing a gain matrix, K, that moves the

eigenvalues of Ac - K Cc closer to the unstable region. From

these results it appears that applying this method to reduce

the observation spillover in a system would degrade system

response.

Sensitivity of System to

Parameter Variation

This final portion of the investigation introduces mode

shape errors to determine system sensitivity. Systems with

a stable versus an unstable controller are examined. The

system considered used two sensors and two actuators to con-

trol the first two modes and suppress modes three and four.

The Transformation Method was applied and errors in modal

amplitude, evaluated at the actuator locations, were simulated

up to ±20% in 5% increments. Although a great deal of data

was generated for systems with either a stable or an unstable

controller, no definite determination could be made that an

unstable controller produced a system that was more suscept-

able to modal errors. It was noted, however, that as the

simulated error increased, the uncoupling of system eigen-

-values degraded significantly more in a system with an unstable
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controller, than in one with a stable one. Table VI repre-

sents the results typically obtained in this analysis. The

effect of a 20% simulated error for a system with a stable

controller is compared to a system using an unstable controller.

The same analysis was conducted on a system controlling the

first three modes and suppressing modes four, five, and six,

producing similar results. Although the eigenvalues of the

system did not vary as significantly as the uncoupling effect

in this model, it is possible that this uncoupling sensitivity

could adversely affect a system representing a more complex

model.
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Conclusions

The two main conclusions to be drawn from this report

are that the destabilizing effect, caused through interaction

of observation and control spillover, on suppressed mode re-

sponse can effectively be reduced, and that the system examin-

ed was quite insensitive to modal error.

Singular Perturbation Optimal Control did not yield re-

sults as encouraging as those found using the Transformation

Method, however, the method was effective in reducing control

spillover. Problems arise in matrix inversion, due to com-

puter roundoff error, when weightings used become very large,

and an infinite weighting would theoretically be required to

completely eliminate control spillover effects. Only in this

limiting case does the Singular Perturbation Method yield

results comparable to those obtained using the Transformation

Method with appropriate placement of actuators.

The Transformation Method was found to be very effective

in eliminating control spillover and uncoupling of system

eigenvalues, when the number of actuators in the system was

equal to/or greater than the number of suppressed modes.

Where the number of modes to be suppr, ssed exceeded the number

of actuators in the system, the method provided the best, in

a least squares sense, actuator locations to minimize control

spillover.
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Reduction of observation spillover using the Transfor-

mation Method was found to degrade system response. The re-

duction of observability, an adverse effect of decreasing the

observation spillover, apparantly was sufficient to alter

the observation gain matrix, such that the eigenvalues of

Ac - K Cc, which indicate the rate of decay in observation

error, shifted to the right, producing a destabilizing effect

on system response.

The modal error analysis conducted did not substantiate

a presupposition that a system with an unstable controller

would be more sensitive to parameter variation than one with

a stable one. In both cases, it was found that the system

was quite insensitive to modal error, with the eigenvalues

of the system never differing greater than the errors in-

duced. Data generated, however, did show that the uncoupling

of system eigenvalues was significantly more sensitive to

parameter variation in a system with an unstable controller.

Although this uncoupling sensitivity did not affect system

response in the model tested, it remains to be determined if

it would cause problems in a more complex model.
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Recommendations

In a large complex structure the number of modes to be

controlled and suppressed could become quite large. As the

number of modes considered in a model increases, the computer

capabilities as well as sensor and actuator requirements to

control the system would have to increase. The first concern,

therefore, in modelling a structure, is which modes should

be considered critical and included in the system. A method

of determining these critical modes, in a complex structure,

would have to be the first step in implementing the control

Cmethods. Further study, of the methods presented in this
thesis, on a complex model is needed to determine the viabili-

ty of this approach to controlling large space structures.

Unstable controllers in a complex model should also be ex-

amined for sensitivity to modelling inaccuracies, as the

analysis presented could not dismiss this possibility.

c
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PROGIAM LUS2I1PT/jOTU=i2TP5TPSTP7

COIPENfSHOA L ?~ G(y*..,2 Bhi)viT21t(65tW(
C At-.1 MN/(U2NCT/2 u 9I10, ,0 5GIAPF050)q ( 61)9S( 6

COXA ./KO/j (ICJ 21 2 A(2K )Vzp-( 1.UA 301 CE),CDH 2092E

CA0A.MFN(20 9 2/ Z :O(2112D) 693 RSIN(E92 V81N( ) T(21b

COMMO/SLEXL. 4,
DATA I8/UC/,t', -11-7 NF1//i//,~P2 ,.OS/IZ2/

C~hU/~N AI 9(r Ii9C
COM:3 t4UKNvCJ KUC
N=MM 3 lt N/.1,
NC22FNA FN
NgEALR 2,

IZE/AC0,A/Ju5IV/0p~BIO
NC i

1 REA,,,A=,A.?cI3,AR,3()tiN)E

002, !.JN2R

N0=24:1N2

RA ' , (WT Q )qI i 2

FOAIP (IQ, J)
5CONTI NUE

A ( It 2 R (291)Ak 0MP ( , ) RD T( 1) 3
00,)~5,)A~I 3 ,)=-NATN)T

3 WAT I)= M ) L) a 2 1 SOT (EI49



AC 3,tL. =AD (39 fr) =Al AkI0 (3,t 6)=I

A )VL=A3 (4, 4)=AD)A4P ( P4=-2.*7Er t WNATC2 )

A~tpt )=A DC(6 6)= A PA 4P M 6b 2 az ir W N A T (3)
At< (LI, 1) =A OAM P P( 4, 1) = W NAT ML 42

AR(My 3) =A DAMP ( 6p3) =-WMA T (B) 42

AR (2, =)ADAMP:Z(2) = i
Ak (39 6 )=MDAMPJ (310 =is

AR0 !,' ) =AAtP ( 3,) =-2 ZETA*WNAr (3)

PRINT 1±1ll, F4IR1,PAIR2,PAl1R3,PAIR., LMEI

DO V- I=iN2

±2 CONTINUE

00 12 I~JN2

IFALL -*J WT0EC(I9i)=,3 I-N PIi

12 CON4TINUE

DO 3 1=JN2

13 CONTINUE
DO 35 IiJ42

33 CONiTINUE

DO 4.L Ii,NR
CALL H00tS(C(lfI)q9L(IA),PA1k3)
CALL MODES(C(2,I) ,lL (I) ,PAI 4)

4.0 Cu iIT! NUE
00 V~ 1±,NR
CALL MOOES(GRGi+4ei) 9,3LCIGN)PPAIi)
CALL MOOESCBR(I+N,2) ,RLCI+N) ,PAI12)
CALL 1CES(CCR(1I)qSL(!+N)qPAIR'I)
CALL MCO&SCCRC2,I),3L(T.N)qPAIR4)

4 5 CONTINUE
00 53 I=19NR2
00 53 J 1 ,oNC2
CRSIN(IJ)=CRCJI)
6RSIV (1I J) BR (19J)

53 CONTINUE
DO W'. Izl#NR2
DO 54, J1,PNR2

C CINCi 9J)=96
SIMI! 9J)20@

54 CONTINUE
00 56 X11NR2
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CINCZ ,1)=1.

PRINI 1645
PRINT*, F
0U ti 1=1,N2

61 CON~TI NUE
WRITE49
PRINT A s R
DO b~2 I=1,NC2

PRINI v OB
00 b3 1=19N2

E 3 PR lNT 49 CFOS Q J) 9J =i19t;2)

PRINT *, "ROB"

D4 PRIT (K8xNC JipC2

FRINT 12JG
DO L1, I =1 9,42
PR INT i 3.A3 ~A M P(QIJ) IJ = iN 2

L9 CONINUE
PRcINT 1325
00 151 11,tNR2

(CONTINUE
PRINT 14u9O
DO 5b 1=19N2

E-8 PRlNT 13C23,v(3(I9J)yJ=iNC2)
PRINT i*4o
DO ±..9 1=1,NR2

F9 PRINI 135 B (1,J) 9J=1,NC2)
PIRI NT 1~i;
PRINT 13': 9(C (I I) I =i 9N2)
PkrINI 13jO, 9(CC(2 1 1I=11N 2)
PR AINI 1£5 50

PRIMT 13t, 39 C:C(211),I= I NR2)
PRINT 16 75
CALL LSVI)F(BR.-N14i*R29NP29N'v29SI4NRN~tNR29SIN ,WKZER)
00 6f 1=1 NC2
WRITE4, SINCI

68 CUtNTINUE
00 106-1 I=iNC2
TI (I, I)=BeRSINCI,2)

121 Ti T ( 11) =T 1 1
PRIMT 1560
00 67 1=19NC2

00 97 IxlNR2
00 97 J1,tNC2
CTCIJ)=C(JI)

97 CONINUE
CALL LINV2F(R36,NC2,NC2,ROBIN,2,4KlER)
CALL VM4ULFF(CT, 5BINN2,NC2,NC2,'d24'2,CTRN2,IER)
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CALL V?ULFF(CTit, ,N2 ,'C2,N2,h42,'2,C1RC, '42,IER)
CALL t1FIC (N2,At,7Fi, FOrXOB, ZO8,4;Zt4IT)
CALL VIUF(OI~,GrC,424,p4,,-,C..R
CALL VrULFF(RZ, tXCRNC2 ,t4N2,N2 ,NC2, N2, TNCZ ,ER)
WR IJE40
PRINT 23..O

98 PRINT 13.0, M ((IpJ) ,J=I N2)
00 122 IigN2
DO 122 J=19,7,2
S(IIJ)=00

122 CON~TINUE
CALL V1PULFF(BT iN~t2Nr2,NCNP2'eC2, ~TNR2,IE.()

161 CONTINUE
CALL VHULFF(TIT,;,NCNr2,NC2NC,4c2riTRm4C,1E' )
CALL VMULFF(UITR,11,NCNC2,NC .,C2CRTN:,IER)
CALL L1INV2F(RT,4-.I,,RTINVpUK,Il)
CALL VMULFF (BIT qkI pN<0~vN F.v1C99K.pktIR
CALL VMLFB191~fRv~~ 9R9CSN21R
INITO
CALL MICC NR29AsWTXiZHR..NITI
1F(MF,*EQ*-±) STOP 'NRIC 010 NOT 'ONVERGE"
CALL VMULFF(RTI.,4VPa1TTNCNZ,PNR2, NC,4CRTP1 ,NCIER)
CALL VMULFF(kT3T, XqNCjlR2,NR2,NCq NR29GilN-0 ER)
IFUIER.EQei29) STOP '6T*X BAD0
CALL VMULFF(TiGi,NC2, 'CNR2,NC2,NC,.g,C2,IER)
PRINT 16LO

( PRINT I3 .u(G~iI),rti,N2)
PRINT 13j3,(G(2,r)v,=IpN2)
CALL VtMULFF(PGN2,4C2,N2,IBIGZI7,IER)
IF(IER*EDsi29) STOP "8B'G 9A040
DO iL2 11,PN2
DO 1(2 Jz1,NC2

1(2 AK(IJ)2KTCJI)
CALL VtiULFFCA'(,CN2, NC2 ,H2,IAKIZZ'3,IZ9,IER)
IJOB= e
CALL ElGKF(AD9 n2vIArPv IJOB two ,)ipWKtIER
IF (UIE~NE *) PRINV& p"TER = *E
PR INT S 0 t
00 57 I1,NZ
PRINT,W(I)

57 CONTiINUE
0O 6E I1±102
DO 6E JitNZ

6b CONTI.NUE
PRINT 1750G
0O 4C 1=1,N2

83 PRINT l3V1O,(Z5(IJ)pJ=IN2)
1J060Q
CALL EIGrtF(Z5N2N2,IJOBWQIQ,41CZE*R)
PRINT iVbS
00 81 I10,2
PR:N7t, WCI)

81 CONTINUE
PRINT 1760
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FACTCR1I=
FATOP2=i .2
WRITE* 0

WRITE,
W-iITE ~

CO 12 G IJ=i,9
PR 1N1, * FACT )R I = ', FACTORip FACT)R 2 = ,FACTORZ

00 114 I:±,N2
DO 114, J=iNC2

114, CONTINUE
BX (,I)=FACTOR2*'(5,q i)
BX (4, I)=FACTOWR (:i, 1)

BX (6, 1=FACTOII*8 Q (v 2)
BX (G, 2) =F ACTO0R2I4 B (5,9 2)

OX (,L , 2)=FACTOZ2* (0*, 2)
?RX (F 1i)=FACT3R2w 9R( 5, )

BkX (t ,2) = FACT JRi' N,( i,?)

BRX (C 12)=FACTOR V B ( 6 )
CX, ) =FACTOk2'B (69)

CX (9 2) =V'T OR 2'B ( 12)

(;X (2, 1)=FACTOll (2, 1)
CX (29 2)=FACTOR2*'C (2, 2)( CX (1, 3)=FACT012l", (i, 3)
CX (2, 3)=FACTO~i*. (2, 3)
CRXCI , 1) FACTOk2CR( i~i)

CkX(2 91) =FACTORV 1,P( 2,1)
CRX (2,92)=FACVT3R2 CRC 2,2)
CRX(I,3)=FACT3R2' cRCiq!)
CRX (2 ,3) =FACT Olkf R, (29,!)
CALL VMULFF( PRX ,GqtI 9NC2,N2, I3Rr GfH21qIH2iq IER)
iF(IEF.*GT.129) STOP ooBr*G 300
PiUNT lb, 0

DO III I1,N2

III CONTINUE
CALL VIULFF (BX GON2p NC2 9N2916 IGO 9ZIER)
00 5! 1=102
DO tt J=102
APRIM E (1, J4N2) z-7 QI, J)

ZA(i9J) =A (1IJ) -?(1,J)

ZZ (1,J)=Z (I 9j)

55 CONTINUE

CALL EIGF(ZZN2,I",IJOBWQTQWKGIER)

PRINT Ili.,0
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PRIMi 13t0,CZ(IqJ),J:1,N2)

COt:T! NUE

GO 6t 1=1 9N2

65 CONTINUE
CALL VMULFF(AK9 CX 2N !,NCr2 9N29 IAK 9E ZS PM-p 'EP)

00 ICG J~it,42

ZA (IJ)=ZB(IJ)
APK-It E (I+N2,J+N2) =7S(IJ)

IC, CONTINUE

CALL EIGRF(ZAN2,i7AIJ08,WQI3,WK9E<,IE)
iF(I~kNL*0~) P7R!NT'-*IFR = ",jIER
PkINI 22G("
00 V(5 1iN2

£Gcl CONTINUE
FRIN1 23LLI
00 110' 1=102
PRINT *,w( I)

jiC Co tTTN UE
CALL VYLFAsrx~2tCt29AP~tio~2-E
0O 112 I=iNR<2
00 112 J1,tN2

AP~dhEAJvI+i2)= ).
APKlE(EJ+bI+12)=Hi2 (JI)

t12 CONTINUE
00 1±3 1=139NF
DO 113 J=13,NF

*113 CONTINUE
00 115 I=19NF
DO 115 J=1,NF

11S CONTINUE
PRINT 25E 0
00 99 1=1,NF

99 PRINT 26. 59(APRIECQI9J),vJ1., 6)

WRITE4,

00 126 Z=1,NF
126 PACINT 264GCA0I4E(J)vJ=?,12)

WRITE#,"

00 127 l=1,NF
127 PRINT 26GO,(APRIME(IpJ)tJi1391b)

CALL EiGCFAP,NFIATJOHQXfrK,1tR)C F(UER.NL.O) PINTI'p3ER =9E
WRITE~
WRITE.,
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PR1NI 24.0
DO 1c5 I11NF

(?5 COf4T!NUE
FALT(.iRi=FACTOU. sC.
FAClLRf2FA T012 -f s(,i

iZt, CONTITNUE
GU) TC- 1

9,F0RMt.T (//i0X,*9T'1 EIC.ENVALLJES OF A"I)
1ii. FOF MAT (IHI///// 925X9 "C,8JTILEVEr 3EA9 WITH TWO SENSORS,

%2 AC7UATORS9 3 'CtNTROL1ED MODES AN') 3 RESIDUAL MCDES",
%//!X"F.RST ACTJATOR POSITION"Fi~s8,
%// oX,"SECO)ND ACIUATCR POsITIuNk :-",F14.8,
%//1L," FIR~ST SENJSOR PCSITION ='4pF1.8,
%//50X, 0* ECON) SE1,13OR POSITION *r 6

V./5b(j 1 8L.M MASS OFNSITY/UNIT LEN;TH 9-36
%/5i,q6*EA1t STIFFNESS (EI) =6932

ijjb FORM7(/iOX9"iOO'S OF THE C4fARAWEP.ISTIC EtnUATIONfl,
7/:oXp"FIRST MO0DE: "y E22. o11+,/55:XoSECOND M)DE: "PE20.±q,
%/5bX,"-THIR MODE ' ",E2C.i4o

V/ X,"-FIFTH M30E I ",qE20.i",
%/5l.X, "SIXTH M30Z 0V, E2^oi4q
%/I, X, "N~ATURAL FREOUE NGIES 1"t
%/,"j*Fr',ST hI3DE* *E2C~i4v/!5X,-S;ZJN kI3DE: ",E20.i.*
X/i9,LXs'*"iRD M30EI ",E2 -1. 14q
%/5!-X"FOURTH 1IOOE I",IE2).149( %/31.Xp "FIFTH MODE I " pE20si4l
Z/5EX9"SIXTH MODE: I ,E2C,. 14)

12 ', FOtd1AT(//25Xo* T-BE "A" MATRLX*/)
13.2' FORMiAT/2Xv6Eib.7)
1325 FOFMATC//2dX9*THE "A" MATRIX (RrESI)JAL)f')
135% FOF.MAT(/2X96Eio97)
143%u FOKMtTC//20X,IF THE- **9" MATF(IX*/)
1:.; FOKt T(//i3Xq*THE 003* MATRIX FOR PESIDUALS/)
15IJu0 FOtdIAT(//2JX,'PI4E "C" k4ATRIX*/)
155p FOKMtT(//2-lX,'THE "C" VATKIX FOR RESIDUALS'/)
15- FOiM~l(//23X90SINGULAP!TIES OF BiE "B" MATRIX FOR RESIDUALS"/)
1576~ FORt1kT(//2!Xl'SINGULARIlIES OF B4E '.' MATRIX FOK F.ESIDUALS#/)
159 FORMT (//2IXt *THE *IT** tATR1X FOR Sl*/)
15EI FORMAT (//20X9 #THE "Too MATRIX FOR CV/)
15 . 0 FP0t1AT(2;XTrIE "G" MATPIX#/)
16 3b FOKMAT(//2LX,*THE BR T:PIES T MATUX*/)
W-5 F0FI11PT /I10XpTE WEIGHTS USEO-/I

I1Ito4: FOFkMT(//23X,T'4E A + LG - KC MArpRixv/)
V - : FOF.MT(//IJX9,*THE EIGENhVALUES OF A + BG - KC MATRIX'/)
17(-b FOrMT(//luX,"T0 ACm4OUtJT FOR MODIL EFRR THE 9 AND Co'

%//1coXp"l1ATRICiES ARE VARIED BY FC'T)R I FOR 00) ELEMENTS AND
Wi~X,"SY FACTOR 2 FCR EVEN ELEMENTS/)

1770 FOiMAT//1OX,*BR TIIlES G MATRIX*0)
1600. FORMA 7(I/IoX,"THE EIGE~tVALUES OF A+3Geo/)
I-. FORMATC13X,"THE SMALLEST REAL PAU T "9E23el3/)( u FOP4AT//3iX,'T4E "K"' MATRIX TRA4SO)SE04f)
e2,3 FOKMAT(//57XPOTHE "A-KC" MA1,RIX'f)
2304 FOkMAT(//IOXt,"THE EIGENVALUES OF A-K.'"/)
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24b FOFMAT(//iGX9"THE SIGFNVALUES OF NZ4 SYSTEMV)
25. FOtmAT//4uX,'* THE 3YSTEII MTRIX/)

EN U)
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SUBROUTIN1E MO:)ES(PHIPRLIX)
COtMCN/SHAPE/L, M
REAL L,'1
BX=B5L I /L- X(

%(GtS( BX) -COSH(B X) )(srRT (M4L)*SIN OLD'SjNH (BLI))
RE IUFN
END
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( Singularity Computer Program Listing
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E-H

_ H

H H

ce)
-

C14 z.

E-4 Z

0 En S- S~

C;r HH -1r

134H H

mmJ z4 0% '

0H H()IU a~- C.J4 cn MH~ U-t E

o , r-l I~eC

SH Z- - - 1 tD + 0 0 ) 1 1 H =H 1H 11 C Z 3 :H H

R~lzpoo 440M0HOOH0O90ZOUOUOE4
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